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Abstract

At the business cycle frequency, energy prices and the skill premium display a
strong, negative correlation. This fact is robust to different de-trending procedures.
Identifying exogenous shocks to oil prices using the Hoover-Perez (1992) dates, shows
that the skill premium falls in response to such a shock. The estimation of the pa-
rameters of an aggregate technology that uses, among other inputs, energy and het-
erogeneous skills, demonstrates that capital-skill and capital-energy complementarity
are responsible for this correlation. As energy prices rise, the use of capital decreases
and the demand for unskilled labor – relative to skilled labor – increases, lowering the
skill premium.
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1 Introduction1

Over the past four decades and at the business cycle frequency, oil prices and the skill2

premium fluctuate in opposite directions displaying a very strong, negative correlation.3

This pattern is robust to different de-trending methods.4

To examine and quantify the mechanism that leads to the negative correlation between5

oil prices and the skill premium, this paper estimates an aggregate production function6

with an explicit role for energy and conclude that capital-skill complementarity – the idea7

that capital is more complementary with skilled rather than unskilled labor– and capital-8

energy complementarity are responsible for this correlation pattern. Due to capital-energy9

complementarity, a rise in energy prices decreases the amount of capital used. Capital-10

skill complementarity increases the demand of unskilled labor (relative to skilled labor),11

decreasing the skill premium.12

This paper has two parts. The first provides a detailed analysis of the data. In the13

second part, these data are used to estimate a structural model. Using annual energy-price14

and skill premium data for the past four decades, this paper assesses the robustness of the15

unconditional correlation between oil prices and the skill premium to different de-trending16

procedures. Specifically, filtering the data in three different ways consistently shows that17

this unconditional correlation is negative and statistically significant. To overcome potential18

endogeneity problems, this analysis moves beyond unconditional correlations and estimate19

the response of the skill premium to an exogenous change in oil prices. These exogenous20

movements are isolated using a methodology proposed by Edelberg, Eichenbaum, and Fisher21

(1999) and Ramey and Shapiro (1998). These authors estimate the response of several22

macroeconomic aggregates to an exogenous change in government expenditures. They do23
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so by identifying events – arguably independent of US economic conditions – that led to24

large military buildups. The dates of these events are in turn included in a VAR as an25

exogenous variable, making the response of the endogenous variables to the onset of one of26

these events easy to compute. Analogously, our analysis uses the Hoover and Perez (1992)27

dates for political events in the Middle East that disturbed oil production or expectations of28

oil production. Estimating the response of the skill premium, oil prices, and other variables29

of interest to the occurrence of a Hoover-Perez event, shows that oil prices rise and the skill30

premium falls. The fall in the skill premium is significant for a period of about three years,31

and it is robust to several VAR specifications.32

The second part of the paper tests the validity of the hypotheses of capital-skill and33

capital-energy complementarities. It does so by specifying a five input aggregate production34

function (including energy) and estimating its parameters. Using aggregate data on capital35

equipment, nonresidential structures, labor inputs for different skill types, and energy use36

and prices, this paper estimates the production function in its original non-linear form. This37

exercise can be viewed as extending Krusell et al.’s (2000) analysis to a framework in which38

energy use and prices are explicitly introduced. Our parameter estimates imply a strong39

degree of capital skill complementarity, although the estimated elasticities do not differ40

significantly or quantitatively from those found with similar data sets but without energy41

in the production function. They also imply capital-energy complementarity. Moreover, the42

correlation between the de-trended fitted skill premium and oil prices is of same magnitude43

as that observed in the data.44

Previous researchers have largely ignored energy prices in the study of the skill premium.45

To our knowledge, this paper is the first to empirically document this fact at the aggregate46
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level and examine the relationship between cyclical movements in the skill premium and47

oil prices within a (partial) equilibrium model. Although work focusing on the behavior48

of the skill premium in equilibrium models does exist (e.g. Krusell et al. (2000) and49

Lindquist (2004)), energy use and prices and their implications for inequality are absent.50

Only one paper has specifically examined the effect of oil prices on relative wages: Keane51

and Prasad (1996) developed an empirical model using panel data and found that skilled,52

rather than unskilled workers, gain during oil price increases. Our line of work is different in53

a substantive way. First, this paper provides a structural interpretation of the data based on54

our estimates of the different elasticities of substitution. Second, it also provides a detailed55

analysis of the facts based on different data sources and methods.56

2 Energy Prices and the Skill Premium: The Facts57

The skill premium is a weighted ratio of skilled wages to unskilled wages1. Our definition58

of skill is by education level: a skilled worker has a college degree, and an unskilled worker59

does not. Data come from the Current Population Survey (CPS), 1963–2004.60

Data on energy prices and usage come from the US Government Energy Information61

Administration. The time series of prices and quantities of oil, coal and natural gas, which62

represent almost 85% of overall energy consumption in the United States cover the period63

1949 to 2004. The price of energy used throughout the analysis is a Laspeyres index of the64

prices of those three main energy sources. The final energy price index was the result of65

dividing the constructed energy price index by the Gross Domestic Product deflator.66

Because oil is a large percentage of total energy consumption in the US economy, the67

deviation from trend of the constructed price index has a very large correlation (about68

1Details are provided in the data appendix available at the journal website.
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0.98) with the deviation of oil prices. If oil prices were used instead of the measure here all69

results presented would still hold, and therefore the terms energy and oil prices are used70

interchangeably.71

2.1 Oil Prices and the Skill Premium: Unconditional Correla-72

tions73

The three panels of Figure 1 show the de-trended skill premium and energy prices2, using74

three types of de-trending methods: deviations from an exponential trend, a band-pass75

filter 3 that removes fluctuations occurring in periods smaller than 3 or larger than 35;76

and a (log) HP-filtered series with a smoothing parameter equal to 100. Table 1 reports77

correlation coefficients for the three de-trending procedures (in parentheses, it also reports78

standard errors).4 Correlations are negative, and in some cases, surprisingly strong. For79

instance, the correlation coefficient between oil prices and the skill premium after removing80

an exponential trend is -0.71, with a standard error of only 0.07. It is still strong using81

the band-pass filter and somewhat weaker using the HP filter. With the latter de-trending82

procedure, a two-standard-deviation interval does not include zero, but it is close.583

The second column of Table 1 reports the same correlation but assumes that the data84

began in 1979, thus eliminating the first oil shock and the large drop in the skill premium85

that occurred in the mid-seventies. The changes in the correlation coefficients are small.86

2Because energy prices are much more volatile than the skill premium, in all plots the skill premium is
“magnified” by multiplying it by 10.

3We use the band-pass filter proposed by Christiano and Fitzgerald (2004).
4Standard errors are computed from an exactly identified GMM procedure. Estimates of the first

and second moments are estimated using moment conditions with a weighting matrix proportional to the
covariance matrix of the residuals. By the Delta Method, the standard errors for the correlation coefficients
are computed, in which case the gradient has a simple expression.

5The MATLAB function corrcoef.m provides probability values for testing the hypothesis of no correla-
tion. The band-pass and exponential detrending are significant at the 1% level. The HP-filtered series is
significant at the 5% level.
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2.2 The Response to an Exogenous Oil Price Shock87

Unconditional correlations can mask an endogenous response of both oil prices and the skill88

premium to a change in US economic conditions. In this case, the argument of a re-allocation89

of factor inputs in response to a change in input prices as an explanation for the observed90

negative correlation between the skill premium and oil prices, would cease to be valid.91

Ideally, one would isolate the exogenous component of oil prices and would test whether92

the skill premium indeed fell in response to a rise in that component. Arguably, a large93

part of exogenous movements in oil prices are related to political instability in the Middle94

East, which is independent of US economic conditions. Using an indicator variable for the95

occurrence of a political event that disrupted oil production in the past is therefore a way to96

identify, if not all, at least the bulk of those exogenous oil price changes. Hoover and Perez97

(1992) constructed such indicator variable, and we label a Hoover-Perez episode the dates98

of those political events that caused large swings in energy prices.6 This section investigates99

the response of the skill premium and other variables of interest to the onset of a Hoover-100

Perez episode by estimating a VAR in which those dates appear as an exogenous variable.101

This analysis is reminiscent of Ramey and Shapiro (1998) and Edelberg, Eichenbaum, and102

Fisher (1999), who identify exogenous increases in public expenditures by isolating events –103

which were independent of US economic conditions – in which large military buildups took104

place. Here, the Hoover-Perez dates play an analogous role to the Ramey-Shapiro episodes105

in those works. The fitted models are of the form:106

logXt = α+ AlogXt−1 +BHPt + ǫt. (1)

6Following Bernanke, Gertler, and Watson (1997), the August 1990 invasion of Kuwait by Iraq is included
as an additional Hoover-Perez episode.
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The number of lags in the VAR is restricted to be one as our time series is rather short.107

In the previous equation, Xt is an m×1 vector of endogenous variables, α is an m×1 vector108

of constants, A is an m×m matrix, HPt is a the date-t value of the Hoover- Perez variable109

(1 if t is a Hoover-Perez date, and zero otherwise), B is an m× 1 vector of coefficients, and110

finally, ǫt is a zero-mean i.i.d process with covariance matrix Ω. The response of logXt+h to111

a change in the value of HPt is given by the coefficient on Lh in the polynomial (I−AL)−1B.112

An important modeling choice is which variables to include in the endogenous vector Xt.113

Our initial bivariate specification includes only the skill premium and oil prices. Including114

oil prices is important as this VAR approach would provide no basis for our analysis if it115

was found that oil prices failed to increase after a Hoover-Perez event. The two graphs116

in Figure 2 show the response of the two elements of logXt – (log) oil prices (top graph)117

and the (log) skill premium (bottom graph) – over a period of 15 years to a unit-change in118

HPt. The solid, thicker line shows the median response and the two dotted lines show 66%119

confidence bands.7 As expected, oil prices rise after a Hoover-Perez episode, with the effects120

peaking immediately and lasting for approximately 12 years. The skill premium falls after121

a Hoover-Perez event, and the median response remains negative for about 9 years (but it122

is only significant for 3). As with oil prices, the peak response happens immediately after123

the episode.124

Given that large changes in energy prices have been associated with recessions in the125

7The computation of these error bands uses the same bootstrapping procedure as the one described in
Edelberg, Eichenbaum, and Fisher (1999). Specifically, given a vector {ǫ̂t}

T
t=1

of fitted residuals from the
VAR, one can sample with replacement from that vector to generate an artificial series {ǫ̃t}

T
t=1 . Using the

initial conditions and the estimated parameters of the fitted VAR, one can simulate an artificial series of
the endogenous variable log(Xt). Re-estimating the VAR using this new simulated series, one can compute
the impulse responses in the same way as with the original data. Repeating this procedure 500 times,
sorting the responses for each horizon by size, and taking the 17th, 50th, and the 83rd percentiles, yields
the median response and the lower and upper bands.
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United States, a VAR that also includes a nominal variable and a measure of real output126

was fitted. This VAR includes the Consumer Price Index (CPI) as our nominal variable127

and Real Gross Domestic Product (Real GDP) as a proxy for real output. The resulting128

vector of endogenous variables, logXt, includes four time series: the log of the CPI, the log129

of Real GDP, the log of oil prices, and the log of the skill premium. The four panels of130

Figure 3 display the response of the four elements of logXt over 15 years to the occurrence131

of a Hoover-Perez event. The top two graphs show the response of oil prices and the skill132

premium and the bottom two the response of real output and the CPI. The inclusion of a133

measure of output and a nominal variable reduces the impact of the Hoover-Perez dates on134

oil prices, resulting in a more muted response. However, oil prices still rise after a Hoover-135

Perez date, and the peak effects are felt immediately. The response is significantly positive136

for 3 years. The response of the skill premium is roughly unchanged both qualitatively and137

quantitatively: the drop is significant for approximately 3 years, and the response peaks138

in the year of the event. The median response of output is negative for the first years but139

zero is within the error bands, illustrating the results of much empirical work that stresses140

the weakening relationship between oil prices and US output. Finally, there is a strong141

association between rises in oil prices and rises in inflation, and consequently, the response142

in the price index is positive – and very significant – for approximately 8 years.143

3 Estimation of an Aggregate Production Function144

An explanation for the previous correlation patterns demands a structural estimation of145

an aggregate production function. Our hypothesis of capital-skill complementarity and146

capital-energy complementarity, which would lead to the observed correlation, needs to be147
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tested. This section specifies an aggregate technology for the US economy and estimates148

its parameters.149

The theoretical model to be estimated is derived from a profit-maximizing firm’s first-150

order conditions for choosing from among five factors of production: skilled labor (st),151

unskilled labor (ut), structures (kst), energy (et), and equipment (ket). The production-152

function form combines a CES aggregation of unskilled labor, an aggregation of equipment153

and energy (the capital-energy composite), and an aggregation of skilled labor and the154

capital-energy composite. This aggregate combines with structures through a Cobb-Douglas155

function:156

Yt = G(et, kst, ket, ut, st) = kαst[µu
σ
t + (1 − µ)(λk̃ρt + (1 − λ)sρt )

σ/ρ](1−α)/σ, (2)

and,157

k̃t = (ξkνet + (1 − ξ)eνt )
1

ν , (3)

where µ, λ, and ξ are parameters that govern income shares, and σ, ρ, and ν are param-158

eters that drive the elasticities of substitution between equipment and unskilled workers,159

equipment and skilled workers, and energy and equipment respectively. The firm purchases160

capital equipment units at a (per unit) price qt, energy units at a price pt, and units of161

structure at a (normalized) price of unity. Energy and equipment prices follow stochastic162

processes known by the firm owner. Moreover, factor markets are assumed to be perfectly163

competitive. The firm can rent equipment units at a rental rate equal to rt. Finally, pur-164

chased units of capital equipment and structures depreciate at rates δe and δs, respectively.165

The elasticities of substitution between the energy-equipment composite and unskilled166

labor, the energy-equipment and skilled labor, and energy and equipment are given by 1
1−σ

,167
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1
1−ρ

, and 1
1−ν

respectively.8 In addition, the skilled and unskilled labor inputs, st and ut,168

are functions of hours (hs and hu) and efficiency indices (ψs and ψu): st = ψsthst and169

ut = ψuthut.170

Denoting by Git the marginal product of input i at time t, the first order conditions for171

a profit-maximizing firm imply the following equations:172

pt = Get
(4)

173

ws,t = Ghs,t
(5)

174

wu,t = Ghu,t
(6)

175

rt = Ghu,t
(7)

176

qt−1

qt
=

1

(1 − δe)
{(1 − δs) −Gkst

− qt−1Gket
} + ǫt (8)

The first four equations equate rental rates to marginal products for four different inputs:177

energy, skilled labor, unskilled labor, and equipment capital. The last equation is a no-178

arbitrage condition that sets the expected return on equipment equal to the expected return179

on structures, where ǫt is an equipment-price-forecast error which is normally distributed180

with a mean of zero and a variance equal to σ2
ǫ .181

The estimation is done in two steps. The first step only estimates the parameter driving182

the elasticity of substitution between energy and capital equipment, ν. The second step183

estimates all the remaining parameters of the model. The reason to separate the estimation184

8In defining these as the elasticities of substitution underlies the assumption that no other factors change
except the pair of factors under consideration. When the number of inputs in production is only two, this
is not an issue. However, in production technologies with more than two inputs, there are several ways one
can define the elasticity of substitution between any pair while accounting for changes in all other inputs.
Two widely used measures are the Allen and the Morishima elasticities. Please see Polgreen and Silos
(2008) for a discussion in the context of a similar model and for additional references.
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into two different parts is that estimating ν can be done by OLS using a very simple struc-185

tural relationship. The second step in the estimation is much more involved. Throughout it186

is assumed that variables chosen by the firm, and therefore endogenous, – ket, kst, et, hut, hst187

– are taken as exogenous by the econometrician. These variables are labelled observed188

independent variables.189

Dividing equation (7) by equation (4), yields190

rt
pt

=
Gket

Get

=
ξ

1 − ξ

kν−1
et

eν−1
t

(9)

A straightforward manipulation gives191

rtket/Yt
ptet/Yt

=
Gket

Get

=
ξ

1 − ξ

kνet
eνt

(10)

The left-hand side is the ratio of capital’s share to output and the ratio of energy expen-192

ditures to output. Denote this left-hand side variable as rkeyt. The right-hand side is a193

constant times the ratio of capital to energy raised to ν. Denoting the ratio of capital to194

energy as rket and taking logs and first differences yield195

∆log(rkeyt) = ν[∆log(rket)] (11)

The parameter ν can be estimated consistently by regressing rkeyt on rket, and the Ap-196

pendix describes the construction of these two series. Figure 4 displays the series from197

1950 to 2004. The dashed and dotted line is ∆log(rkeyt) and the solid line is ∆log(rket).198

Ordinary least-squares estimation gives a value for ν of -0.962 with a standard error of199

0.461. The case of limν→0 corresponds to a Cobb-Douglas aggregate between energy and200

equipment, so ν = −0.962 implies substantially more complementarity; the elasticity of201

substitution is only about 0.5. The parameter ν is fixed at this value in the second part of202

the estimation, which is described below.203
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Let us denote by Xt the set of observed independent variables hst, hut, et, ket, and kst,204

and by θ the vector of all unknown parameters parameters in the model, (ξ, ν, σ, ρ, µ, λ, α, δe,205

δs, σ
2
ǫ )

′. Manipulating optimality conditions (5) and (6) gives us the following two equations:206

wsthst + wuthut
Yt

= f1(θ;Xt, ψst, ψut, ǫt), (12)

and,207

wst
wut

= f2(θ;Xt, ψst, ψut, ǫt). (13)

Equation (12) equates the share of labor in output to a non-linear function of observed208

independent variables, latent variables, and parameters. The left-hand side variable of209

equation (13) is the skill premium.210

The no-arbitrage condition (8) equates the growth rate of the relative price of capital211

equipment to a non-linear function of parameters, observed independent variables, and212

latent variables. Stacking conditions (8),(12), and (13) yields the following equation,213

Wt = f(θ;Xt, ψst, ψut, ǫt) (14)

Here Wt is the vector of left-hand side variables: the share of labor in output, the skill214

premium, and the growth rate of equipment prices.215

The sources of estimation errors are given by the price-forecast-error ǫt and the latent216

variables ψst and ψut, which follow the stochastic process,217

φt = φ0 + υt, (15)

where φt = [log(ψst), log(ψut)]
′ and υt ∼ N(0,Σ). The covariance matrix Σ is diagonal and218

the two diagonal elements are restricted to be equal to σ2
ψ.219
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Equations (14) and (15) are the measurement equations and transition equations of220

a non-linear state-space model.9 One can use several methods to estimate its parame-221

ters and latent variables, but we choose a Bayesian procedure employed by Polgreen and222

Silos (2008).10 Bayesian inference in our environment involves specifying a prior distri-223

bution p(γ) for the parameters of interest γ = (θ,Σ, φ0), and constructing a posterior224

distribution p(γ|{Wt}
T
t=1, {Xt}

T
t=1) as the product of the prior and the likelihood function225

L({Wt}
T
t=1|γ, {Xt}

T
t=1). We can then obtain any statistics of interest by sampling from the226

posterior distribution.11227

3.1 Priors228

For most of the parameters, prior distributions are the same as those used by Polgreen and229

Silos (2008). Besides fixing ν at the value estimated above, the two depreciation rates δe and230

δs are fixed as well, following Krusell et al. (2000). The depreciation rates for equipment231

and structures were fixed at 0.1250 and 0.005; ν is fixed at -0.962. Energy introduces232

an additional parameter ξ, endowed with a prior normal distribution with mean 0.5 and233

standard deviation 0.1, truncated to the [0, 1] region. Table 2 summarizes our priors.234

The prior mean for ρ is halfway between 0.08, estimated by Berndt and White (1978),235

and -1.6 estimated by Dennis and Smith (1978). These studies cover the manufacturing236

sector from 1950-1973. The prior mean for σ is the same as the estimate from Clark and237

Freeman (1977), and a number also reported in Hammermesh’s (1993) survey of labor238

demand. The share parameters µ, λ, and ξ have prior distribution centered at the mid-239

9The inclusion of additive i.i.d. measurement errors in the first two equations of Wt is done for technical
reasons. The variances of these errors turn out to be small.

10A complete description of the estimation methodology is outside the scope of this paper. The interested
reader is referred to Polgreen and Silos (2005) for a detailed description of the procedure. For alternative
methodologies, see Ohanian et al. (2000).

11The results presented below are based on 300,000 draws from the posterior distribution.
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point of their admissible regions, with relatively large standard deviations. The prior on α,240

the share of structures, is rather informative, given its minor role in the analysis. Its prior241

mean is centered at Krusell et al.’s estimate, which in turn is close to the value calibrated242

by Greenwood, Hercowitz, and Krusell (1997) and equal to 0.13. Priors on the variances243

are relatively diffuse.244

3.2 Estimation Results245

Table 3 reports posterior means and standard deviations for σ and ρ. It also includes the246

estimate for ν, obtained above by OLS. The first two parameters drive the elasticities of247

substitution of equipment with unskilled and skilled labor respectively; ν drives the elasticity248

of substitution between energy and capital equipment. The posterior moments for ρ and249

σ are close to those obtained by Polgreen and Silos (2008); see their Table 1, third line.250

At their means, the estimates for ρ and σ imply values for the elasticities of substitution251

between equipment with unskilled and skilled labor equal to 4.4 and 0.65, respectively.252

These estimates imply a large degree of capital-skill complementarity, while the previously253

found estimate of ν implies equipment-energy complementarity.254

With the draws from the posterior distribution of the parameters, one can readily obtain255

a “distribution” for the fitted skill premium resulting from this model. Its construction is as256

follows. First, all shocks in the model are set to zero at all points in time. One can then use257

each draw and the value of the exogenous variables (capital, hours, etc. . . ) to construct a258

fitted skill premium for our sample period using the right-hand side of equation (13). These259

fitted values are de-trended using the three procedures in Section 2.1. For each draw of the260

posterior and for each of the de-trending methods, one can compute a (posterior) correlation261

coefficient between the skill premium and oil prices. Once this distribution is obtained, it262
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is straightforward to compute any statistic of interest. Table 4, in its first column, reports263

posterior means and standard deviations of this distribution of correlation coefficients.264

The table shows how the fitted skill premium is negatively correlated with oil prices,265

irrespective of the methodology one uses to de-trend. These (mean) negative correlations266

are sufficiently far away from zero and of a similar magnitude as those found with actual267

data. An exception is the HP-de-trended skill premium, which has a weaker correlation with268

oil prices than that observed with actual data. The weaker correlation is a consequence of269

the model’s inability to capture the really high-frequency component of the skill premium.270

To further compare our results to those found in Section 2.1, standard errors were com-271

puted using that same GMM procedure. Using the posterior means of the parameters and272

the exogenous variables, and “turning off” all shocks in the model for all time periods,273

the fitted skill premium was computed once. Table 4 reports on its second column the274

correlation of oil prices and the fitted skill premium along with its GMM-standard-error275

(again, for each the three procedures). These magnitudes suggest an even stronger rela-276

tionship between the skill premium and oil prices than that observed in the data. Notice277

that all estimated correlations are closer to -1 than with actual data, except perhaps with278

HP-de-trending, in which case the magnitude is about the same.279

In US data, oil prices are much more volatile than the skill premium. The ratio of the280

standard deviation of oil prices to the standard deviation of the skill premium in the United281

States is 9.852 (0.916), if one uses exponential de-trending; 10.510 (1.327) if one uses a282

band-pass filter; and 9.966 (1.205) if one uses an HP-filter. Table 5 is analogous to Table283

4, but instead of displaying correlation coefficients, it displays the ratio of the standard284

deviation of oil prices to the standard deviation of the fitted skill premium. This ratio is285
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roughly in line with the data for two of the de-trending procedures – band-pass and HP286

filters – with a value of approximately 8. If one uses exponential de-trending, the volatility287

of oil prices relative to the fitted skill premium is substantially lower – roughly half – than288

with actual skill premium.289

Oil price shocks have been associated with recessions in the United States, particularly290

those of the 1970s and 1980s. Consequently, it is informative to compare the output and291

skill premium joint dynamics in the model with those found in US data. In particular,292

the focus is on the ratio of output and skill premium volatilities and the cross-correlations293

between output and the skill premium at one lead and one lag,12 which Table 6 reports.294

In the data, the volatilities between the skill premium and output are roughly the295

same. The point estimate of σGDP/σSP is about 1.16, but the standard error is 0.16, so a296

reasonable confidence band should include one. In terms of dynamic correlations, the skill297

premium leads the cycle, and the contemporaneous correlation is close to zero, 0.21, with298

a standard error of 0.15. Turning to the predictions from our model, Table 6 reports on its299

third column the same statistics reported for US data, but computed for the fitted values of300

output and the skill premium. The fitted skill premium is more volatile than output, lagging301

the business cycle, and the estimated contemporaneous correlation with output is positive.302

As the fitted value of output at time t is given by G(et, kst, ket, ut, st), these results show that303

the residual is rather important for explaining output dynamics. As is well known, much of304

the cyclical behavior of output is missed if one focuses solely on inputs (energy, capital, and305

labor) and dismisses the (Solow) residual. This pattern does not hold true for the fitted skill306

premium: its cyclical dynamics match well those of the actual skill premium. Technology307

12These moments are computed with HP-filtered output and skill premium. Results with the other two
de-trending procedures are similar and available upon request.
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shocks, which greatly affect output but not the skill premium because of their neutrality,308

would reduce the correlation between the two and increase the volatility of output.13309

4 Conclusion310

The relative wage that a skilled worker earns relative to that earned by an unskilled worker,311

the skill premium, is negatively correlated with oil prices at the business cycle frequency.312

This paper has clearly established the robustness of this fact. Employing three different313

de-trending methods (an HP filter, a band-pass filter, and deviations from an exponential314

trend) the correlation was found to be negative. Moreover, identifying exogenous changes315

in oil prices following Hoover and Perez (1992), it was found that the response of the skill316

premium to such a change, defined as the occurrence of a Hoover-Perez event, was negative317

and significant.318

In addition, this paper has estimated an aggregate production function in which energy319

use and prices are explicitly introduced. Two key results emerge from this estimation. First,320

capital is more easily substituted with unskilled labor than with skilled labor. However, this321

finding is not controversial: a wide body of research has found some degree of capital-skill322

complementarity in the US economy (e.g., Griliches (1969), Krusell et al. (2000)). Also,323

researchers have used capital-skill complementarity to explain the low frequency movements324

of the skill premium (e.g., Krusell et al. (2000)). Second, there is a high degree of comple-325

mentarity between capital and energy. These two facts are a plausible explanation for the326

13We do not have a good explanation for the lagging behavior of the fitted skill premium. Despite this
behavior not being significant – the standard errors are large, the point estimate of the contemporaneous
correlation (0.46) is smaller than that at one-lead (0.59). There are several factors that could be contributing
to this discrepancy. Among others, abstracting from the the residential sector in our measure of fitted output
(but not in the measure of actual output), or assuming that the appropriate deflator of non-residential
structures is a price index of consumption goods.
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observed correlation between oil prices and the skill premium: when oil prices rise, firms327

substitute unskilled workers for capital, and the skill premium falls.328
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Table 1: Correlations: Skill Premium and Oil Prices

Filter Entire Sample Second Subsample
(1963-2004) (1979-2004)

Exp. De-trend -0.713 (0.066) -0.690 (0.091)
BP De-trend -0.434 (0.135) -0.397 (0.189)
HP De-trend -0.312 (0.154) -0.343 (0.173)

Notes: Correlation coefficient between oil prices and the skill premium for two different sub-samples
(across columns) and three different de-trending procedures (across rows). The HP-filter uses a smoothing
parameter of 100. The bandpass filter eliminates fluctuations occurring at periods shorter than three
years or longer than 35.

Table 2: Prior Distributions

Parameter Prior
ξ N(0.5,0.1) χ[0,1](ξ)
σ N(0.575,0.25) χ[−∞,1](σ)
ρ N(-0.76,0.25) χ[−∞,1](ρ)
µ N(0.5,0.2) χ[0,1](µ)
λ N(0.5,0.2) χ[0,1](λ)
σ2
ǫ Gamma(0.3,0.01)
α N(0.11,0.005) χ[0,1](ξ)
σ2
ψ Gamma(0.4,0.01)

Notes: Prior distributions for the parameters of the structural model. The indicator variable χA(x) takes
the value one if the random variable x belongs to set A, and zero otherwise.
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Table 3: Posterior Moments

Parameter Posterior Mean Posterior Standard Deviation
(or OLS estimate) (or OLS s.e.)

σ 0.774 0.045
ρ -0.525 0.066
ν -0.962 0.461

Notes: The first column gives posterior means of σ and ρ, and the OLS estimate of ν using relationship
(11). The second column gives posterior standard deviations for σ and ρ, and the standard error (s.e.) for
the OLS estimate of ν.

Table 4: Correlations: Oil Prices vs. Fitted Skill Premium

De-trending Proc. Posterior Distribution GMM s.e.’s
Exp. De-trending -0.736 (0.019) -0.814 (0.048)

BP Filter -0.544 (0.048) -0.648 (0.081)
HP Filter -0.189 (0.009) -0.349 (0.114)

Notes: The first column gives the mean correlation between actual oil prices and the fitted skill premium
resulting from averaging across correlations computed for all draws of the model’s parameter vector. We
de-trend oil prices and the fitted skill premium using a different procedure in each of the three rows. The
second column computes the fitted skill premium once using the mean of the estimated parameters and
computes its correlation with actual oil prices. Standard errors in this case are computed using GMM.

Table 5: Relative Volatility ( σp

σSP
): Oil Prices vs. Fitted Skill Premium

De-trending Proc. Posterior Distribution GMM s.e.’s
Exp. De-trending 4.354 (0.815) 4.109 (0.397)

BP Filter 8.561 (0.546) 8.541 (1.100)
HP Filter 7.997 (0.488) 7.977 (1.325)

Notes: The first column gives the mean ratio of volatilities of actual oil prices and the fitted skill premium
resulting from averaging across ratios of volatilities computed using all draws of the model’s parameter
vector. We de-trend oil prices and the fitted skill premium using a different procedure in each of the three
rows. The second column computes the fitted skill premium once using the mean of the estimated
parameters and computes its volatility relative to that of oil prices. Standard errors in this case are
computed using GMM.
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Table 6: Output vs. Skill Premium (U.S. Data and Fitted Values)

U.S. Data Model
σGDP/σSP 1.159 (0.155) 0.644 (0.096)

Corr(SPt, GDPt) 0.206 (0.146) 0.460 (0.148)
Corr(SPt−1, GDPt) 0.446 (0.105) 0.291 (0.131)
Corr(SPt+1, GDPt) -0.106 (0.175) 0.590 (0.079)

Notes: The first column displays the ratio of the standard deviation of US output and US skill premium,
the contemporaneous correlation between those two variables, and the correlation of the US skill premium
with one lead and one lag of US output. Standard errors computed by GMM in parentheses. The second
column gives the analogous moments using the fitted skill premium and the fitted output which were
computed with the mean values of the estimated parameters.
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Figure 1: De-trended energy prices (dashed and dotted line) and skill premium (solid line).
Three different de-trending methods: exponential de-trending (top panel), band-pass filter-
ing (medium panel), and HP filtering (bottom panel)
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Figure 2: Responses of oil prices – top panel – and the skill premium – bottom panel – to
the onset of a Hoover-Perez episode over a 15-year horizon. The solid line is the median
response and the two dotted lines represent 66% confidence bands
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Figure 3: Response of oil prices, skill premium, real output, and the consumer price index
(left to right, top to bottom order), to the onset of a Hoover-Perez episode. The solid line
is the median response and the two dotted lines represent 66% confidence bands.
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Figure 4: Two series to estimate ν. The dashed-dotted line (left-hand axis) is the ratio of
the share of capital in output to the share of energy in output. The solid line (right-hand
axis) is the ratio of capital to energy.
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