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Abstract

Markov chain approximations of continuous state-space processes are common in

dynamic economic models. Increasing the dimensions of the approximating state space

is costly; this paper develops a procedure to evaluate the tradeoff between the number

of dimensions devoted to modelling dynamics and those devoted to modelling the con-

temporaneous state space for the variable. The methodology borrows from a previous

literature which formalizes statistical inference within calibrated general equilibrium

models. As a particular application, Markov chain approximations for post-war-real-

per-capita-US consumption growth are compared. Standard business cycle theory is

used to generate needed information regarding state transition probabilities. In this

application it is useful to trade some accuracy in defining the state space for more

realistic dynamics.
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1 Introduction

Markov chain approximations of macroeconomic variables have been used fre-

quently in dynamic stochastic general equilibrium models. Examples include

approximations of income processes as in Aiyagari(1994), who uses a seven

state Markov chain to approximate labor endowment. Also, many papers in

the asset pricing literature approximate consumption growth, from Mehra and

Prescott (1985) to Otrok, Ravikumar and Whiteman (2001). The reasons for

using such approximations are usually computational, in that subsequent cal-

culations are more convenient to carry out on a discrete grid. For example,

in consumption-based asset pricing models, some preference specifications are

simple enough that returns and prices can be calculated even if consumption

growth is described as a continuous state autoregression; for recursive prefer-

ences, discretization decreases the computational burden.

A well-known method for computing Markov chain approximations of con-

tinuous state space univariate or vector first order autoregressions is due to

Tauchen (1986). Although not the only one available (see for example Tauchen

and Hussey (1991)) this method is popular due to its simplicity.

If a given time series can be modelled as an autoregressive process there

are two choices to be made when approximating it as a Markov chain. One

pertains to the choice of the lag length: the optimal model might have p lags,

versus a model with p + 1 lags or p− 1 lags. The other choice is the dimension

of the state space for the variable. Let N denote the number of states the

variable can take values on. Choices of N and p imply a transition probability

matrix of dimension Np, which can be quite large even for moderate N if p > 1.

Table 1 and Figures 1 and 2 illustrate the tradeoffs involved in modelling

U.S. consumption growth. The first column in Table 1 shows the sample values

for the mean, variance and the first three autocorrelations for the observed con-

sumption growth series. The second and third columns show the same moments

obtained by simulating a long time series from a transition matrix calculated

for US consumption growth using Tauchen’s method for the p = 2, N = 3
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case, (second column), and the p = 1, N = 9 case, (third column). Figure 1

plots the unconditional densities (left axis) for a continuous state space AR(3)

model, with the unconditional mass function (right axis) obtained from the

transition matrices for the p = 2, N = 3 Markov chain approximation, while

figure 2 compares the same continuous state space density, with a Markov

chain approximation where p = 1, N = 9. Although the number of states (N)

is rather large in the second case, the model does not match the second and

third autocorrelations closely. However, with a clearly worse approximation

to the unconditional density, the Markov chain model with p = 2 is closer to

matching the second and third autocorrelation, but to keep the dimension of

the transition matrix fixed, N has to be decreased.

Table 1: Consumption Growth Moments: Models and Data.

Actual data p = 2, N = 3 p = 1, N = 9
Mean 1.005 1.005 1.005

Variance 2.9 × 10−5 3.5 × 10−5 3 × 10−5

First Autocorr. 0.22 0.19 0.22
Second Autocorr. 0.14 0.1 0.05
Third Autocorr. 0.16 0.03 0.01
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Figure 1: p = 2, N = 3 vs. Continuous State Space AR(3)

With Np limited by computational considerations, how should one choose

N and p? Clearly, this depends upon the economic questions being addressed.
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Figure 2: p = 1, N = 9 vs. Continuous State Space AR(3)

More detail in the unconditional marginal distribution for the random variable

can be characterized with greater N ; greater p is necessary to capture more

features of the dynamics of the process. Inasmuch as both volatility (uncondi-

tional variance) and persistence (first and higher order dynamics) are often of

interest in dynamic macroeconomics, it is useful to have a formal procedure for

assessing the tradeoffs involved. The classical statistical procedure for doing

this would involve assuming that one of the candidate approximations repre-

sents the “correct” specification, and comparing the maximized value of the

likelihood under that specification to those under other specifications. Such

a procedure is not feasible here: none of approximations under consideration

could be considered the correct specification, and further, not even the obvious

candidate for a likelihood function, the economic model whose solution requires

the discretization, is regarded as correct.

This state of affairs is common in the calibrated model literature, and sev-

eral methods have been proposed recently for introducing formalism into model

assessment procedures (see, for example, the survey by Canova and Ortega).

Traditionally, studies that have used calibrated models to examine economic

issues have been informal in assessing the fit of those models, and usually their

conclusions are based on some implicit measure of distance between some of
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the moments of model-simulated data and the corresponding sample moments

from the observed data (a prototypical example is Cooley and Prescott (1995)).

Following the notation in Canova and Ortega (2000), let yt represent the data

and xt = f(γ, zt) represent a simulated value of the corresponding vector from

the model, which is a function of a set of parameters γ and a driving process

zt. Besides the informal approach when comparing moments, examples in the

literature are Watson (1993), who focuses on the properties of the implicit

“residual term” between the observed variable yt and the simulated xt values;

Gregory and Smith (1993), who take sampling uncertainty into account in their

treatment of zt, but treat the data as given; Cechetti, Lam and Mark (1994),

who base their estimation and calibration method in the sampling variability in

the data, treating γ and the parameters of the zt process as known; and finally

a Bayesian approach developed by DeJong, Ingram and Whiteman (1996) and

Geweke (1999) who treat model and data uncertainty symmetrically.

The “minimal econometric approach” developed by Geweke does permit

comparison of multiple models, none of which are regarded as “correct”, and

under conditions when the likelihood is unknown. This methodology only re-

quires being able to simulate from a given model, i.e. to generate a sequence

of random draws from the implied distribution of a model. The approach, de-

scribed in more detail Section 2 of the paper, is implemented in Section 3 to

assess alternative Markov chain approximations for the consumption growth

series, which is used routinely in asset pricing models, and thus the assessment

provided here may be of broader use.

2 Model Comparison

Suppose a researcher wants to compare two asset pricing models that differ on,

say, preferences or the endowment process. The researcher will need a formal

method to carry out the comparison between the two economic models. This is

analogous to what is being done in this paper, but instead of economic models,

I am comparing two Markov chain approximations. The remaining part of the

section describes formally the comparison methodology.
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The comparison is based on a set of moments of interest. For comparing

two economic models, such moments might include average ratios of key eco-

nomic variables, standard deviations of some of those variables, etc. In the

Markov chain example, I will focus on intercepts, slope coefficients, and vari-

ances in the implied continuous-state autoregression. The competing models

are used to simulate large samples of model output, and these samples are used

to estimate, nonparametrically, the joint distribution of the objects of inter-

est. These distributions are judged in light of the analogous joint distribution

produced from a reduced-form, statistical model of the actual observed data.

Specifically, the models are compared via a ”Bayes factor”: one model ”beats”

another if the expected value of its joint distribution, taken with respect to the

data-induced distribution, is larger than the other’s.

To present the details of the comparison procedure, I borrow heavily from

Geweke (1999). Let A1 and A2 be any two models to be compared. These

can be general equilibrium models or Markov chain approximations. What

is common between these models is that they do not describe the data in an

exact way: exact relations between variables in a dynamic stochastic models

do not hold in the data, and variables that are sometimes approximated as

Markov chains can take more than a finite number of states. Let θ denote

the vector of moments (or functions of moments) that these models claim to

describe, and hence how the models perform when describing θ will be the

basis of comparison between A1 and A2. This vector of moments will be a

function of the model’s underlying parameters, and by specifying prior distrib-

utions over these parameters a density over θ is induced. Denoting this density

p (θ | Aj) within model Aj, realizations from this distribution are obtained via

simulation. Let model D (D for data), be a statistical model, a reduced form

model independent of A1 and A2 that will serve as a link between these and

the data. It will also be endowed with a prior distribution p(θ |D), and the

assumption of normality in the errors will imply a certain likelihood function

for the data, denoted as p(y | θ,D). The distribution of interest for the vector θ

in the context of model D will be the posterior distribution p(θ | y, D) given by:
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p (θ | y, D) ∝ p (y | θ,D)p(θ | D) (1)

Simulated values of θ from this distribution will be generated via a poste-

rior simulator described below. The final goal is to obtain a numerical measure

that allows the comparison between any two given models. First, I need the

following two assumptions:

Assumption 1: p (y | θ, A1, D) = p (y | θ, A2, D) = p (y | θ,D)

This assumption implies that A1 and A2 bring no new information about

the observables y if θ is known in the context of model D, since the purpose of

those models is precisely to describe θ. A straightforward result from assump-

tion 1 is:

p (A1 | θ,y, D) =
p (y | θ, A1, D)p (A1 | θ,D)

p (y | θ,D)
= p (A1 | θ,D) (2)

An equivalent result holds for model A2. The sequence of observables y is

not needed to make any comparison between A1 and A2 if the vector θ is al-

ready known in the context of model D. That is, given model D, θ is sufficient

to distinguishing A1 and A2.

The second assumption needed is:

Assumption 2: p (θ | D) ∝ constant, p (θ | A1, D) = p (θ | A1), and

p (θ | A2, D) = p (θ | A2).

This assumption means that prior to observing data, model D brings no

information about θ, either directly through the prior distribution of θ given

model D, or indirectly through either A1 or A2. We are interested in p (A1 |y,D)
p (A2 |y,D)

,

which is the ratio model probabilities given the observed data and the model
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D that we are using to conduct the comparison. Now note that under Assump-

tions 1 and 2, we have

p (A1 | y, D)

=

∫

p (A1 | θ,y, D) p (θ | y, D)dθ

=

∫

p (A1 | θ,D) p (θ | y, D)dθ

=

∫

p (θ | A1, D) p (A1 | D)

p (θ | D)
p (θ | y, D)dθ

=
p (A1 | D)

p (θ | D)

∫

p (θ | A1)p (θ | y, D)dθ (3)

The last integral,
∫

p (θ |A1)p (θ | y, D)dθ, is the expectation of p (θ |A1)

under the posterior distribution p (θ | y, D), which is proportional to the like-

lihood because of Assumption 2. Although the support for both densities is

the same, this quantity will be small whenever simulations from model D and

simulations from model A1 congregate in different regions of that support. The

farther away these regions are from one another, the smaller the quantity will

be. The greater the overlap between these regions, the greater the quantity.

An analogous expression can be derived for model A2, and therefore a posterior

odds ratio can be constructed:

p (A1 | y, D)

p (A2 | y, D)
=

p (A1 |D)

p (A2 |D)

p (y |A1, D)

p (y |A2, D)
(4)

which, by virtue of (3), becomes

p (A1 | y, D)

p (A2 | y, D)
=

p (A1 |D)

p (A2 |D)

∫

p (θ | A1)p (θ | y, D)dθ
∫

p (θ | A2)p (θ | y, D)dθ
(5)

Comparing (5) and (4), the key ingredient in the model comparison is the

Bayes factor, a quotient of marginal likelihoods:
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p (y |A1, D)

p (y | A2, D)
=

∫

p (θ |A1)p(θ | y, D)dθ
∫

p (θ |A2)p (θ | y, D)dθ
(6)

Given that the ratio of prior odds will be set to one throughout applications

in the paper, this ratio will provide a numerical value for comparing models

A1 and A2. The higher the Bayes factor, the closer simulations from model A1

are to simulations from model D, relative to model A2 and vice-versa. Given a

sequence of simulated values θ(m); m = 1, . . . ,M from model D, I can estimate

the Bayes factor as:

p (y | A1, D)

p (y |A2, D)
≈

1
M

∑M
m=1 p (θ(m) |A1)

1
M

∑M
m=1 p (θ(m) | A2)

(7)

If functional forms for p (θ | A1) and p (θ | A2) were known, the computation

of Bayes factors would be straightforward. Here these functional forms are not

known. However, as noted above, the approach here only relies on being able

to generate random draws from the distributions of interest. These draws

are used to estimate p (θ | A1) and p (θ | A2) using standard non-parametric

techniques. Given simulations {θ(s1)}M1

s1=1 and {θ(s2)}M2

s2=1 from models A1 and

A2 respectively, and the simulation θ(m)M

m=1 from model D; using a kernel

density estimator, an approximate Bayes factor will be:

p (y |A1, D)

p (y |A2, D)
≈

1
M

∑M
m=1(

1
M1

∑M1

s1=1 K(θ(s1); θ(m)))

1
M

∑M
m=1(

1
M2

∑M2

s2=1 K(θ(s2); θ(m)))
(8)

In the above expression K is the kernel function; in the computations below

this is a Gaussian density.

3 Comparing Markov Chain Approximations

The “minimal econometric” approach described in section 2 will be used to ex-

plore the significance of the tradeoff between the number of lags in the original

autoregressive model and the number of gridpoints that defines the state space
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for the variable. The main elements will be two models that the researcher

wants to compare (A1 and A2), an auxiliary model denoted D and a vector θ,

considered the “object of interest” that models claim to describe. Denoting yt

the variable of interest I assume that it can be modelled as1:

yt = φ0 + φ1 yt−1 + . . . + φp yt−p + ǫt ; ǫt ∼ N(0, σ2) (9)

This implies that yt has a continuous state space, and furthermore yt is not

yet a Markov process. However, defining the vector Xt = {yt−1, . . . , yt−p} ,it

is clear then that Xt will depend only on Xt−1. The details of going from a

continuous state space autoregression to a Markov chain are described in the

Appendix, but the main idea is to define a grid of N points, {ȳ1, ȳ2, . . . , ȳN},

which are the states that the variable yt can take. A simple way of doing this

is to center this set at the mean of the variable and let its range be a multiple

of the standard deviation of yt. The state space for yt will be the same as the

state space for any lag of yt and hence the total dimension of the “extended”

state space for Xt will be Np. Using the notation from the previous section,

models A1 and A2 will be any two Markov chain models that approximately

describe the above process and that will differ in the choices of p and N . The

“extended” state space will be described by a transition matrix of dimension

Np with typical element ̺ik, denoting the probability of transiting from state

i to state k. This transition matrix will satisfy the conditions for a limiting

(stationary) distribution πi, i = 1, . . . , N∗ to exist, with each πi being a function

of the ̺ik. With both the transition probabilities and the limiting distribution

we can find any population moment: mean, variance, jth order autocovariance,

etc. As an example, denoting the state space for the discretized variable yt as

{ȳ1, ȳ2, . . . , ȳN} the mean m, variance γ0 and first autocovariance γ1 will be:

m =
N

∑

i=1

πiȳ
i (10)

γ0 =
N

∑

i=1

πi(ȳ
i − m)2 (11)

1The process in (9) represents the starting point for applying Tauchen’s method. In other words, it
represents the choice of p for a Markov chain approximation. As seems natural and as it will become clear
below, model D, the auxiliary model, will have the same structure: it will be an AR process with lags pD.
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γ1 =
N

∑

i=1

πi{
N

∑

k=1

̺ik(ȳ
i − m)(ȳk − m)} (12)

I now need to determine what type of econometric model I will use to link

any two Markov chains (i.e. I need to choose model D) and choose the vector

of moments that will be the basis of comparison between models A1 and A2.

The econometric model will be a continuous state space autoregression of

order pD, since one would want the Markov chain to represent such a process.

An initial and sensible choice for θ would be a vector whose elements were

population moments of the model , say, mean, variance and first autocorrela-

tion. However, given that the prior distribution for the elements of θ is “flat”

(see Assumption 2) it will be necessary to work with an alternative choice,

namely θ = {φ0, φ1, φ2, . . . , φpD
, σ2}′2. These are the intercept, slopes and vari-

ance of the error term in an AR(pD) model with normal disturbances. Note

that the elements of θ are functions of moments. Given a transition probabil-

ity matrix, the relationship between consumption population moments and θ

is given by:

γj =

{

φ1γj−1 + φ2γj−2 + . . . + φpD
γj−pD

if j = 1, 2, . . .
φ1γ1 + φ2γ2 + . . . + φpD

γpD
+ σ2 if j = 0

(13)

where γj is the jth order autocovariance and,

φ0 = m (1 − φ1 − . . . − φpD
) (14)

where m is the population mean of the series.

The mapping from the ̺ik, the elements of the transition matrix, to θ

should be clear now. Equations (10)-(12) and their extensions to higher order

autocovariances provide the link between the ̺ik and πi, and the population

moments in the Markov chain model, while the inverse Yule walker equations

(13)-(14), map these population moments into elements of θ. Hence, by speci-

fying a prior distribution on the transition probabilities for a given model Aj a

2As noted below, due to computational constraints I will not be able to work with the entire vector
{φ0, φ1, φ2, . . . , φpD

, σ2}′ and I will report results with different subsets of it.
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prior distribution is induced on θ through the stationary distribution and the

previous equations (inverse Yule Walker equations). This distribution will be

the density p (θ |Aj). The description of where these priors come from is the

purpose of the next section.

3.1 Priors

It has already been mentioned that p (θ | D) ∝ constant, and therefore the

choice of a prior distribution affects only the parameters involved within the

two Markov chain models A1 and A2. The final goal is to induce priors on

the elements of the object of interest θ through the elements of the transition

matrix ̺ik, to generate draws (i.e. to simulate) from the density p (θ | Aj).

The way I proceed is to begin with a dynamic economic model that replicates

certain features of the observed consumption process. I will use it to induce

priors on the elements of the transition matrix and hence induce a density

on the elements of θ. The model chosen is a standard (Hansen (1985)) real

business cycle model. This model is well known, having been studied by several

economists such as Campbell (1994) and Uhlig(1999), and I will just give a

short introduction, to fix notation and to understand the mapping from this

model to the transition matrix. This description follows Uhlig (1999) closely.

The model has a representative agent that maximizes lifetime utility over

consumption and leisure. The agent makes the standard two choices in sim-

ple macroeconomic models: how to allocate his endowment of time between

labor and leisure, and what proportion of the physical good to invest and how

much to consume. More formally, the maximization problem can be written as:

max{ct,kt,nt}∞t=0
E0

∞
∑

t=0

βt(
c
1−γ
t − 1

1 − γ
+ H(1 − nt)) , β ∈ (0, 1) , γ,H > 0

subject to:

it + ct = ztk
α
t−1n

1−α
t , 0 < α < 1 (15)

kt = (1 − δ)kt−1 + it , 0 < δ < 1 (16)

lt + nt = 1 (17)
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lnzt+1 = ρ lnzt + ǫt+1 ǫt+1 ∼ N(0, σ2
ǫ ) , 0 < ρ < 1 (18)

k0 > 0 given (19)

The notation is standard: ct, lt and nt denote consumption, leisure and

employment at time t; labor and capital, kt−1, are used in the production

process which is also affected by a productivity shock zt whose logarithm follows

a first order autoregressive process. Due to the uncertainty about the true

values of the parameters β, γ, δ, α, ρ and σ2
ǫ , I will specify prior distributions

for these parameters instead of specifying fixed values. Generating draws from

these distributions and solving the model for each of the draws, these priors

will induce a distribution for the ̺ij, the parameters in the transition matrix.

To derive decision rules (policy functions) for consumption, investment and

labor, I will solve the log-linearized version of the problem; that is, instead

of solving for the decision rules in the original variables ct, it, nt, etc.. the

policy functions will be constrained to be linear in their logarithms, and will

be obtained in terms of deviations from the steady state. For a variable xt,

let x̂t denote its percentage deviation from its steady state value x̄, i.e. x̂t =

logxt − logx̄. In log-linear form, the resource constraint, Euler equation and

law of motion for the technology shock are:

0 = Ak̂t + Bk̂t−1 + Cŵt + Dẑt (20)

0 = Et[Jŵt+1 + Kŵt] (21)

ẑt+1 = ρẑt + ǫt+1, ǫt+1 ∼ N(0, σ2
ǫ ). (22)

The matrices in this system will be functions only of the parameters in the

model. In this simple problem there is only one endogenous state variable kt−1,

one exogenous state variable zt and a vector wt of three control variables with

elements it, ct and nt. The solution is a set of two (matrix) equations that

describe the equilibrium laws of motion for the steady state deviations for the

endogenous state variable and the control variables:

k̂t = P k̂t−1 + Qẑt (23)

ŵt = Rk̂t−1 + Sẑt (24)
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The solutions for the matrices P , Q, R and S are given using methods de-

veloped by Blanchard and Kahn (1980) and Sims (2000), also briefly described

by Uhlig (1999). These matrices will be also functions of the behavioral and

technology parameters β, γ, δ, α, ρ and σ2
ǫ , and hence given a value for the ini-

tial deviation of the capital stock from its steady state value, realizations for

the technology shock zt, and a value for the parameters, simulation from the

system (23) and (24) is straightforward.

Before discussing the prior for β, γ, δ, α, ρ and σ2
ǫ , and the computational

procedure in detail, it is important to notice that the previous model has no

growth in it. By definition the mean value of the steady state deviations for

any of the variables in the above system is zero. However, there is a positive

trend in US post-war consumption: the mean value for annual growth is about

2 %. To deal with this problem, once a sequence {ct}
T
t=0 is obtained from the

model and growth rates are calculated, a value of about 0.5% per quarter is

added to each realization to force the model to match the observed mean value.

This process will shift the state space upward by 0.5 percent but will have no

impact in the transition probabilities. 3.

To specify prior distributions for the set of parameters, I obtained means

drawn from previous work and also some prior predictive analysis. I want to

ensure that the model roughly matches consumption growth moments, with-

out being too concerned how the model did in terms of matching observations

for investment, employment, interest rates, etc. All parameters were endowed

with (truncated) normal prior distributions, and the exact values for mean and

standard deviations are given in the following table4 :

3An equivalent approach would be to de-mean the time series obtained from the data, fit model D to
these de-meaned values and do the entire procedure with the transformed series, which would indeed have
mean zero.

4The value of H was determined so that in a steady state the proportion of time that an individual spends
working is 1/3.
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Table 2

Parameter Prior
γ N(1.1, (0.05)2)I[0,5](γ)
β N(0.99, (0.01)2)I[0,1](β)
δ N(0.025, (0.002)2)I[0,1](δ)
α N(0.36, (0.02)2)I[0,1](α)
ρ N(0.92, (0.01)2)I[−1,1](ρ)
σǫ N(0.012, (0.001)2)I[0,∞](σǫ)

The process of simulating one draw from the density p (θ |Aj) can be summa-

rized in the following steps:

• Step 1 : Draw one value for the parameters of the business cycle model

from the prior distribution given in the previous table. Solve the model

and generate a time series of length 1,000 for consumption growth.

• Step 2 : Fit an autoregression of order p by least squares to this time series

and take it to be the population autoregression for the induced process

for consumption growth in the real business cycle model.

• Step3 : Specify a value for N (number of states in the Markov chain) and

the two endpoints of the grid for consumption growth (fixed throughout

simulations to be [-1%,2%],i.e. states are added in the center of the dis-

tribution), and apply Tauchen’s method to the autoregression fit in Step

2, yielding a transition matrix of order N∗ = Np, with typical element

̺ik. Impose restrictions on this matrix to yield a symmetric unconditional

distribution. The choice of these two elements, the number of states N

and the number of lags p is what defines a particular Markov chain ap-

proximation Aj.

• Step 4 : From the transition matrix and the grid for consumption growth

obtained in Step 2, calculate population moments such as m, γ0, γ1, etc...as

in equations (10)-(12), and from these, retrieve the elements of θ from the

inverse Yule-Walker equations (13)-(14).

These four steps result in one draw from the density p (θ |Aj). The procedure

is repeated M times to obtain the shape of the entire density. Figure 3 shows
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Figure 3: Priors for moments of consumption growth (solid line). Observed data value
(dotted line)

how the model does (with the priors for parameters specified above) in terms of

matching certain moments of consumption growth for 2,500 simulations, along

with values obtained from the actual post-war consumption growth series5.

It is important to note that results will be sensitive to the mean values in

these distributions. The implied consumption growth process would look very

different with substantial changes in parameters such as the discount factor,

the coefficient of relative risk aversion and the variance and autocorrelation of

the productivity shock.

3.2 Posterior Simulation

As mentioned, the posterior density p (θ | y, D) is the density to which sim-

ulations from a given model will be compared, providing a link between two

models and enabling the computation of a Bayes factor. A kernel for this

5When simulating the model, the first autocorrelation was constrained to be smaller than 0.3, not to have
too much persistence in the series. The standard deviation was also bounded below at a value of 0.0009.
These constraints can be seen as additional properties of my prior distribution for consumption growth within
the RBC model.
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density is given by Bayes theorem, a formula that I rewrite again here for con-

venience:

p (θ | y, D) ∝ p (y | θ,D)p (θ | D) (25)

Assumption 2 ensures that this posterior will be proportional just to the like-

lihood given that the prior is flat.

For the comparison of Markov chain approximations it is convenient to spec-

ify an autoregression as my model D. In this case, I can make use of the results

in Zellner (1971) and generate draws from the posterior in the following way.

Suppose I specify model D to be:

yt = φ0 + φ1 yt−1 + . . . + φpD
yt−pD

+ ǫt; ǫt ∼ N(0, σ2) (26)

Denote β = (φ0, φ1, . . . , φpD
)′, then θ = (β, σ2)′. Given Assumption 2,

in which the prior distribution for θ is constrained to be proportional to a

constant, the posterior distribution is then proportional to the likelihood:

p (β, σ2 | y, D) ∝ (
1

σ2
)−T/2 exp {−

1

2σ2
(S2 + (β − β̂)′X ′X(β − β̂))}I(s)(β)

(27)

To clarify the notation in this expression, here T denotes the total number of

observations, β̂ denotes the ordinary least squares estimate of β, S2 is the total

sum of squares (y−Xβ̂)′(y−Xβ̂), y is a Tx1 vector with all the observations,

X is the data with pD lagged values of yt for all observations T , and I(s)(β) is

an indicator function that assigns a value of zero to the density whenever any

eigenvalue of the autoregression is outside the unit circle. From the previous

expression is clear that:

β | σ2,y, D ∼ MV N(β̂, (X ′X)−1σ2)I(s)(β). (28)

Since usually σ2 is unknown I need the marginal posterior density for σ2,
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p (σ2 | y, D), which is obtained by integrating out β from the posterior:

p (σ2 | y, D) =

∫

p (β, σ2 | y, D)dβ (29)

Which yields,

σ2 | y ∼ Inverse − χ2(S2, T − d − 2)

In this expression d is the dimension of the vector β. Hence to simulate from

this posterior a draw from σ2 | (y, D) is made, and conditional on this draw,

β is generated from β | (σ2,y, D) 6.

4 Results

After discussing how to obtain simulations from models D and Aj, and explain-

ing how to obtain a marginal likelihood, I present some results in this section.

The definition of consumption used here is total real personal consumption

expenditures, which is transformed to per capita terms through dividing by

the total non-institutionalized population 16 years or older. Real consumption

is taken from the DRI database (original source: Bureau of Economic Analy-

sis) and population is taken from the Bureau of Labor Statistics. The sample

covers the period 1947 to 2001; there are 212 quarterly observations.

A continuous state space AR of order pD = 3 has been chosen as model

D. The reason for this choice is that according to Otrok, Ravikumar and

Whiteman (2001) this seems to be the best representation for post-war real

consumption growth when using autoregressive models with the number of

lags varying between 1 and 5.

∆ct = φ0 + φ1 ∆ct−1 + φ2 ∆ct−2 + φ3 ∆ct−3 + ǫt ; ǫt ∼ N(0, σ2) (30)

6With this approach, each draw comes from the posterior distribution and there is no convergence (burn-
in) phase, as is the case with Gibbs sampling, for example.
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Throughout, the number of draws from the posterior distribution of this au-

toregression, and the number of simulations from the prior for the real business

cycle model were both set at 2,500. 7 Posterior means and standard deviations

from model D are:

Table 3

Mean Standard Deviation
φ0 0.7229 0.1045
φ1 0.1053 0.0678
φ2 0.0843 0.0686
φ3 0.0915 0.0678
σ2 4.2x10−5 4.2x10−6

It would be optimal to consider θ to be this set of five parameters. However,

I need to restrict d (the dimension of θ) to be at most three, because kernel

smoothing in higher dimensions becomes infeasible. I present results for two

different θ’s, one that includes only the first slope (φ1) and the variance (σ2),

and a second θ that adds also the constant term (φ0) to the previous vector.

Two different bandwidths 8 h are used: 0.2 and 0.5, to see how sensitive the

results are to the choice of this parameter.

All results are presented in Table 4. The auxiliary model D was always an

autoregression of order pD = 3, and only one simulation from this model was

used in all calculations. Instead of presenting Bayes factors, the table shows

marginal likelihoods9 (along with numerical standard errors) for several choices

of p, the order of the population autoregression in the Markov chain model,

and N , the number of gridpoints in the state space.

7Clearly the higher the number of simulations, the more stable the kernel density estimator will be, and
results will show that in some cases 2,500 is small. However, due to the amount of computation time involved,
significantly higher number of draws were infeasible.

8The bandwidth parameter h controls the degree of smoothing in the non-parametric function evaluation.
9The Bayes factor between any two models is the ratio of the marginal likelihoods.
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Table 4: Marginal likelihoods (standard errors in parentheses)

Model D: AR(3)

θ = (φ1, σ
2)′ θ = (φ0, φ1, σ

2)′

h=0.2 h=0.5 h=0.2 h=0.5
p = 1,N=2 0 0 0 0

p = 1,N=3 131,309 118,807 29,113,468 34,541,805
(2,039) (1,708) (5,957,950) (5,144,584)

p = 1,N=4 210,530 186,843 63,965,657 53,952,989
(3,888) (2,804) (9,609,284) (7,038,213)

p = 1,N=5 234,977 211,497 66,445,142 59,514,744
(3,187) (2,649) (8,838,618) (7,399,384)

p = 1,N=6 237,108 216,489 65,506,560 60,031,604
(3,185) (2,711) (8,835,662) (7,404,775)

p = 1,N=7 237,450 209,288 61,595,363 58,785,430
(3,273) (2,636) (391,976) (7,281,454)

p = 1,N=8 227,544 209,901 61,226,171 57,845,737
(3,181) (2,650) (8,200,143) (7,178,380)

p = 1,N=9 228,329 205,495 60,692,195 56,770,676
(3,202) (2,574) (8,206,808) (7,024,697)

p = 1,N=10 223,906 205,324 60,210,750 55,498,947
(3,109) (2,578) (8,100,610) (6,851,060)

p = 1,N=15 216,040 199,674 58,845,009 54,812,891
(3,014) (2,516) (7,939,074) (6,773,737)

p = 1,N=20 215,014 199,217 58,114,564 54,472,088
(3,012) (2,558) (13,055,294) (6,733,999)

p = 2,N=2 3.9852 2.5320 0 0
(0.7440) (0.3894)

p = 2,N=3 116,698 107,175 58,942,434 55,152,114
(2,447) (2,126) (3,041,061) (2,539,151)

p = 2,N=4 255,657 226,304 167,479,330 143,340,286
(4,486) (3,437) (6,092,917) (4,536,992)

p = 2,N=5 257,694 230,861 156,006,072 141,468,311
(4,170) (3,398) (6,825,142) (4,639,943)

p = 3,N=2 267.70 254.54 0 0
(13.33) (12.62)

p = 3,N=3 103,809 97,689 63,496,448 59,132,788
(2,435) (2,153) (7,339,432) (2,808,938)

p = 3,N=4 254,414 227,864 158,063,706 121,703,904
(4,451) (3,561) (14,620,417) (4,641,582)

p = 3,N=5 248,024 221,270 175,380,996 141,033,422
(4,314) (3,522) (15,827,566) (4,752,142)
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For the case of h = 0.2, the maximum of all models considered is the com-

bination p = 2, N = 5, with a marginal likelihood of 2.57 × 105 although this

model is indistinguishable from the p = 3, N = 4 case, given the standard

errors. Restricting p to be 1, the maximum is attained at N = 7. The only

case with a marginal likelihood that is zero is p = 1, N = 2, the reason being

that since the endpoints of the state space are fixed throughout simulations,

the model does not match the variance very well for lower values of N (notice

the small values of marginal likelihoods when N = 2 when p > 1). In addition

to this, it seems that the steepest increases occur when going from N = 2 to

N = 4, with further increases or decreases being fairly small.

These results are fairly robust to increasing the bandwidth to 0.5: all mar-

ginal likelihoods are smaller, however most rankings of models in terms of p

and N remain unchanged. The only exception is the case p = 1, N = 7; it

has the highest marginal likelihood when h = 0.2, but only the third highest

marginal likelihood when h = 0.5. It might seem surprising that the highest

marginal likelihood is not achieved at the highest N . There are two possible

explanations for this: First, the dynamic model used as a prior distribution

does not represent certain aspects of consumption growth correctly and this

misspecification might be acting in such a way that the optimal Markov chain

approximation in the RBC model (the one that has the highest N) is not the

best when compared with model D. The second explanation might be related

to the choice of θ: A model might be improving when N is increased, but along

dimensions that are not in θ, therefore giving the impression that the model is

actually doing worse. As stated above, due to technical reasons the dimension

of θ needs to be kept low, and to further study these issues an alternative

method for comparing the resulting densities should be used.

It is interesting to look at the optimal choice among different models when

the dimension of the transition matrix N∗ = Np is fixed. For Np=4, there are

two choices: either p = 1, N = 4 or p = 2, N = 2. Clearly the choice favors

p = 1 with a Bayes factor in the order of 5×104. Increasing N∗ to about 8 or 9,

gives three possibilities: p = 1, N = 8, p = 2, N = 3 and p = 3, N = 2. Again
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the marginal likelihood is maximized at p = 1, but with a Bayes factor over the

p = 2 case of only 2. For higher number of states, however, the optimal choice

leads to values of p = 2 or p = 3, but with increases in marginal likelihoods

that are not too large.

What happens when φ0 is added to θ? First, no model with N = 2 should

be chosen, since now all marginal likelihoods are zero. Increasing the dimen-

sion of θ increases the errors in the estimation so that now, within any choice

of p models with N ≥ 4 are always within two standard deviations from each

other (with one exception: when h = 0.5, p = 3, N = 5 is clearly better than

p = 3, N = 4) . As an example, when p = 1, the choice of N that maximizes

the marginal likelihood is 5, but its value is well within even one standard

deviation of the marginal likelihood when N = 20.

The implications for the optimal choice of p and N for a given dimension of

the transition matrix can be studied in an analogous way. Using the same cases

as before, when Np=4 the result is unchanged: p = 1, N = 4 performs better

than p = 2, N = 2. When N∗ is increased to 8 or 9, again p = 1 dominates

p = 2 or p = 3; and for higher number of states an increase in p is needed.

Overall it seems that modelling consumption growth as an autoregression of

order 2 prior to its discrete state approximation yields satisfactory results with

only 3 states and a total dimension for the transition probability matrix of 9.

5 Conclusion

Although Markov chain approximations have been used extensively in eco-

nomics, the tradeoff between the two fundamental issues when modelling a

time series as a Markov chain, namely, the number of lags (p) in the original

model, and the dimension of the state space (N) has been (to my knowledge) ig-

nored. In this paper I have approached this issue using a methodology that has

been recently used to compare calibrated models in dynamic macroeconomics,

and amounts to measuring the degree of overlap between multivariate densities

of a vector of interest that the models claim to describe. The particular series

chosen to address the question was US post-war-real-per-capita consumption
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growth. For two different vectors of interest, optimal choices for N and p were

calculated for several dimensions of the final transition matrix, and sensitivity

analysis to the bandwidth parameter in the kernel smoothing was done. In

this case, it turned out to be advantageous to sacrifice some detail in the state

space (N) in order to obtain a better representation of the dynamics. However,

further research is needed to overcome technical difficulties pertaining to the

way multivariate densities are compared, and an alternative to kernel smooth-

ing would be desirable to increase the dimension of the vector of interest and

be able to compare models along a higher number of dimensions.
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